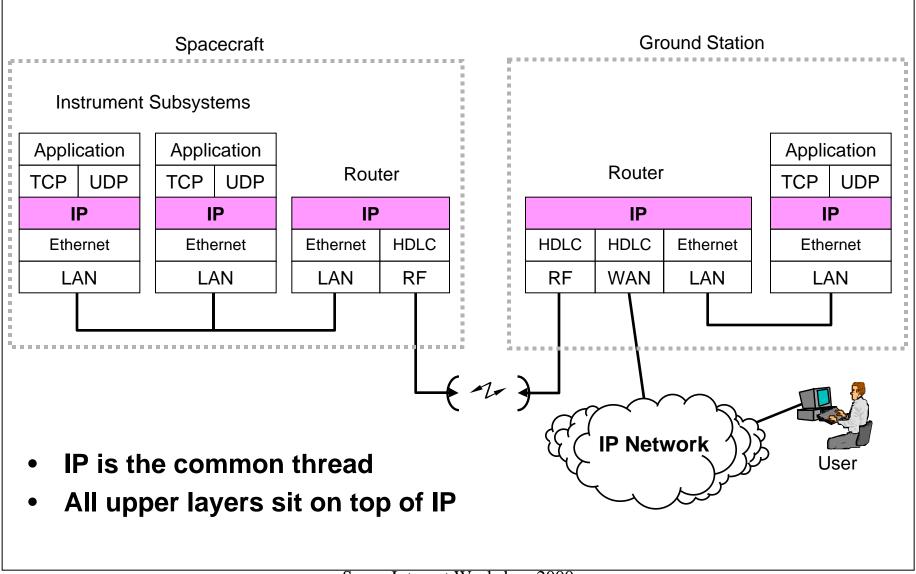
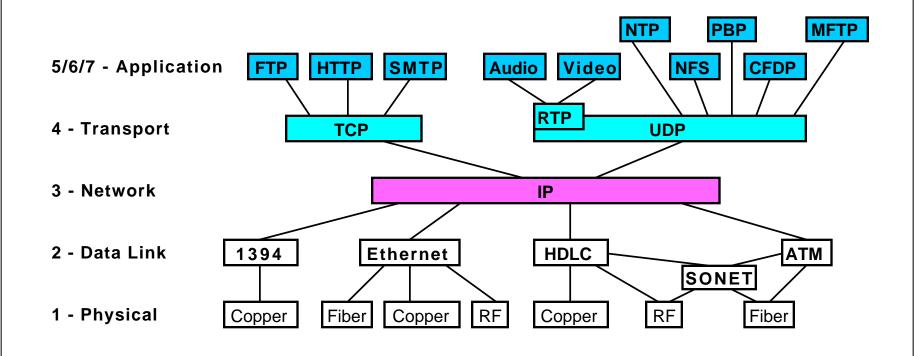


Space Internet Workshop 2000

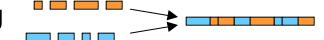

Transport Protocols and Applications for Internet Use in Space

Edward Criscuolo
Computer Sciences Corp
ed.criscuolo@gsfc.nasa.gov
November 14, 2000

End-to-End IP Network Concept



Layered Model


- OSI 7 layer model
- IP is not TCP!
- Paper is on top two layers

Transport layer

Transport layer provides multiplexing

- Three main transport layer protocols on the Internet
 - UDP User Datagram Protocol (RFC-768)
 - Provides Multiplexing and error detection (checksum)
 - Atomic packet delivery
 - Delivery and delivery order not guaranteed
 - RTP Real Time Protocol (RFC-1889)
 - Built "on top of" UDP
 - Adds sequence numbering, timestamping, and delivery monitoring
 - TCP Transmission Control Protocol (RFC-793)
 - Provides multiplexing, flow control, sequencing, error detection, and automatic retransmission
 - Guaranteed in-order delivery
 - Provides a reliable "byte pipe" from sender to receiver.

Application Layer

UDP apps

- Simple Data Delivery: Custom application
- Reliable File Transfer: PBP, MFTP, CFDP, NFS, TFTP
- Time Synchronization: NTP

RTP apps

Audio and Video: QuickTime, RealVideo, I-Phone

TCP Apps

- Reliable Simple Data Delivery: Custom application
- Reliable File Transfer: FTP, HTTP
- Store and Forward (email): SMTP

Space vs Terrestrial Issues

Don't Space Links Have Long Delay?

- UDP is delay insensitive. Will work to Pluto!
- LEO is close! 4 32 ms Round Trip Time.
- TCP has been used out to Geosync at over 400 Mbits/sec

Aren't Space Links too Noisy for IP?

- Only <u>TCP</u> throughput affected by noise. IP & UDP are not.
- FEC used to improve space link BER. 10⁻⁵ is spec, 10⁻⁷ is typical.
- Uncorrected Telephone lines have a BER of 10⁻⁵!
- ECN, SACK, TCP/PEACH are coming

More Space vs Terrestrial Issues

- Don't Spacecraft Have Constrained Power, CPU, & Bandwidth?
 - Compare to an Internet-ready cell phone.
 - New CPUs (StrongArm, PowerPC 750) are ready to fly.
- Isn't Spacecraft Connectivity too Intermittent and too Variable for IP?
 - Just like laptop computers, cell phones, automobiles
 - Mobile-IP, DHCP
- Spacecraft Have Huge Forward/Return Path Asymmetry
 - Driven by convention, not physics.
 - STDN compatible receivers limited to 4 kbps uplink
 - TDRSS can do 2 mbps symmetric

IP Operations Scenarios

Real time telemetry

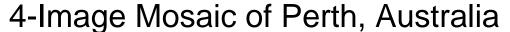
- Unidirectional UDP
- Reliable TCP

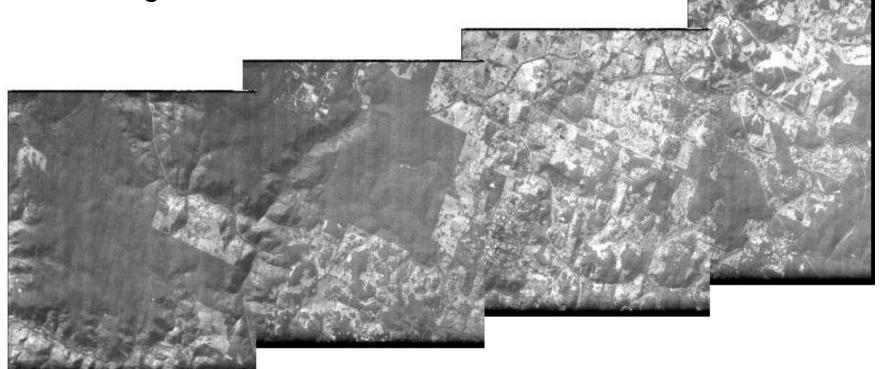
Reliably Downlink Recorded Science & Engineering Data

- Short Delay FTP
- Long Delay PBP / MFTP / CFDP
- Store & Forward SMTP

Onboard Clock Synchronization

Synchronization and drift mitigation - NTP


Commanding


- Store & Forward SMTP
- Reliable Realtime TCP
- Blind Realtime UDP

Results

Error-Free Images Downlinked with FTP June 7, 2000

Future

Ground-based Flatsat Testbed

- UDP-based reliable file transfer
- Mobile IP
- Mobile Router
- IPSEC, VPN

Flight Validations

- UDP-based reliable file transfer
- Blind Commanding
- HTTP-based reliable transfer
- Mobile IP
- Store & Forward

http://ipinspace.gsfc.nasa.gov/